Abstract

We calculate the spatially resolved tunnelling conductance of topological superconductors (TSCs) based on ferromagnetic chains, measured by means of spin-polarised scanning tunnelling microscopy (SPSTM). Our analysis reveals novel signatures of MFs arising from the interplay of their strongly anisotropic spin-polarisation and the magnetisation content of the tip. We focus on the deep Yu–Shiba–Rusinov (YSR) limit where only YSR bound states localised in the vicinity of the adatoms govern the low-energy as also the topological properties of the system. Under these conditions, we investigate the occurrence of zero/finite bias peaks (ZBPs/FBPs) for a single or two coupled TSC chains forming a Josephson junction. Each TSC can host up to two Majorana fermions (MFs) per edge if chiral symmetry is preserved. Here we retrieve the conductance for all the accessible configurations of the MF number of each chain. Our results illustrate innovative spin-polarisation-sensitive experimental routes for arresting the MFs by either restoring or splitting the ZBP in a predictable fashion via: (i) weakly breaking chiral symmetry, e.g. by the SPSTM tip itself or by an external Zeeman field and (ii) tuning the superconducting phase difference of the TSCs, which is encoded in the 4π-Josephson coupling of neighbouring MFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.