Abstract

We investigate a new representation of general operators by means of sums of shifted Gabor multipliers. These representations arise by studying the matrix of an operator with respect to a Gabor frame. Each shifted Gabor multiplier corresponds to a side-diagonal of this matrix. This representation is especially useful for operators whose associated matrix possesses some off-diagonal decay. In this case one can completely characterize the symbol class of the operator by the size of the symbols of the Gabor multipliers. As an application we derive approximation theorems for pseudodifferential operators in the Sjöstrand class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.