Abstract
Novel azomethines derived from acefylline tethered triazole hybrids (7a-k) have been synthesized and evaluated against human liver cancer cell line (Hep G2) using MTT assay. The synthesized series of azomethines exhibited promising efficacy against liver cancer cell line. Screening of the synthesized series identified compound 7d with the least cell viability value (11.71 ± 0.39%) as the most potent anticancer agent in contrast to the reference drug acefylline (cell viability = 80 ± 3.87%). In this study, the potentials of the novel agents (7a-k) to inhibit liver cancer proteins were assessed. Subsequently, the structure-activity relationship of the potential drug candidates was assessed via ADME/T molecular screening. The cytotoxic potential of these derivatives was also investigated by hemolysis and thrombolysis. Their hemolytic and thrombolytic studies showed that all of these drugs had very low cytotoxicity and moderate clot lysis activity. Compound 7g (0.26% hemolysis) and 7k (52.1% clot lysis) were the least toxic and moderate thrombolytic agents respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.