Abstract

XPF-ERCC1 and XPG proteins are nucleases that are involved in human nucleotide excision repair. In this study, we characterized the structure-specific junction-cutting activities of both nucleases using DNA substrates containing a bubble or loop structure. We found that the junction-cutting activities of XPF-ERCC1 and XPG were greatly stimulated by human replication protein A (RPA), while heterologous single-stranded DNA-binding proteins could not substitute for human RPA. To test for specific interaction between RPA and XPF-ERCC1 as is known to occur between RPA and XPG, we employed a pull-down assay with immobilized "bubble" substrate. We found that the binding of XPF-ERCC1 complex to the bubble substrate was enhanced by RPA, suggesting a possible mechanism for RPA in the excision nuclease system, that is the targeting of the nuclease subunits to their specific sites of action. Furthermore, the RPA-promoted junction cutting by XPF-ERCC1 and XPG nucleases was observed with "loop" substrates as well, raising the possibility that XPF-ERCC1, XPG, and RPA may function in removing loop structures from DNA, independent of the other subunits of the human excinuclease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.