Abstract
This paper develops an indirect iterative learning control scheme for batch processes with time-varying uncertainties, input delay, and disturbances. In this paper, a predictor based on a state observer is designed to estimate the future state and to compensate for the input delay. Then a feedback controller based on the estimated state and the set-point error is used to track the specified reference trajectory, where, of the options available, a robust H∞ controller is designed in the presence of time-varying uncertainties and load disturbances. Then a proportional plus derivative type iterative learning control law is designed. An injection molding process model demonstrates the new method’s effectiveness, and a comparison with a direct-type design is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.