Abstract

The relationship between the impactor velocity and the amount of strain localization in a single impact compression of cellular solids is known. However, few studies report on the effects of repeated high frequency compression. We therefore studied the mechanical behavior of Norway spruce, a cellular viscoelastic material, before, during, and after cyclic high frequency, high strain rate, compression. A custom made device applied 5000-20 000 unipolar (constrained compression and free relaxation) fatigue cycles with a 0.75 mm peak-to-peak amplitude at 500 Hz frequency. The consequences of this treatment were quantified by pitch-catch ultrasonic measurements and by dynamic material testing using an encapsulated Split-Hopkinson device that incorporated a high-speed camera. The ultrasonic measurements quantified a stiffness modulus drop and revealed the presence of a fatigued low modulus layer near the impacting surface. Such a localized plastic deformation is not predicted by classical mechanics. We introduce a simple model that explains several changes in the mechanical properties caused by fatiguing. The high speed images indicated pronounced strain localization in the weakest (thinnest walls) parts of the earlywood layers, and revealed strain propagation as a function of time. We present a hypothesis explaining why there is a fatigued layer formed in a piece of wood that has sustained cyclic compression and free relaxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.