Abstract

BackgroundDocosahexaenoic acid (DHA) is essential for human diet. However, high production cost of DHA using C. cohnii makes it currently less competitive commercially, which is mainly caused by low DHA productivity. In recent years, repeated fed-batch strategies have been evaluated for increasing the production of many fermentation products. The reduction in terms of stability of culture system was one of the major challenges for repeated fed-batch fermentation. However, the possible mechanisms responsible for the decreased stability of the culture system in the repeated fed-batch fermentation are so far less investigated, restricting the efforts to further improve the productivity. In this study, a repeated fed-batch strategy for DHA production using C. cohnii M-1-2 was evaluated to improve DHA productivity and reduce production cost, and then the underlying mechanisms related to the gradually decreased stability of the culture system in repeated fed-batch culture were explored through LC– and GC–MS metabolomic analyses.ResultsIt was discovered that glucose concentration at 15–27 g/L and 80% medium replacement ratio were suitable for the growth of C. cohnii M-1-2 during the repeated fed-batch culture. A four-cycle repeated fed-batch culture was successfully developed and assessed at the optimum cultivation parameters, resulting in increasing the total DHA productivity by 26.28% compared with the highest DHA productivity of 57.08 mg/L/h reported using C. cohnii, including the time required for preparing seed culture and fermentor. In addition, LC– and GC–MS metabolomics analyses showed that the gradually decreased nitrogen utilization capacity, and down-regulated glycolysis and TCA cycle were correlated with the decreased stability of the culture system during the long-time repeated fed-batch culture. At last, some biomarkers, such as Pyr, Cit, OXA, FUM, l-tryptophan, l-threonine, l-leucine, serotonin, and 4-guanidinobutyric acid, correlated with the stability of culture system of C. cohnii M-1-2 were identified.ConclusionsThe study proved that repeated fed-batch cultivation was an efficient and energy-saving strategy for industrial production of DHA using C. cohnii, which could also be useful for cultivation of other microbes to improve productivity and reduce production cost. In addition, the mechanisms study at metabolite level can also be useful to further optimize production processes for C. cohnii and other microbes.

Highlights

  • Docosahexaenoic acid (DHA) is essential for human diet

  • Effects of glucose concentration on DHA production in repeated fed‐batch cultivation Our previous study showed that the specific growth rate and specific glucose consumption rate of C. cohnii M-1-2 were both decreased and maintained at a low rate after 120 h in fed-batch culture with initial inoculated volume at 10% (v/v) [3]

  • The effect of glucose maintenance concentration on DHA production was first investigated in repeated fed-batch cultivation of C. cohnii M-1-2 (Fig. 1 and Table 1)

Read more

Summary

Introduction

Docosahexaenoic acid (DHA) is essential for human diet. high production cost of DHA using C. cohnii makes it currently less competitive commercially, which is mainly caused by low DHA productivity. In recent years, repeated fed-batch strategies have been evaluated for increasing the production of many fermentation products. The possible mechanisms responsible for the decreased stability of the culture system in the repeated fedbatch fermentation are so far less investigated, restricting the efforts to further improve the productivity. A repeated fed-batch strategy for DHA production using C. cohnii M-1-2 was evaluated to improve DHA productivity and reduce production cost, and the underlying mechanisms related to the gradually decreased stability of the culture system in repeated fed-batch culture were explored through LC– and GC–MS metabolomic analyses. Due to ocean pollution and sharp decrease of fish resources in recent decades, fermentation of heterotrophic microalgae has been proposed to be a promising alternative for DHA production [3, 4]. C. cohnii has been widely used for industrial production of DHA in many countries [3, 7]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.