Abstract

Delamination or fracture of composite veneers can occur as a result of improper design of the fiber‐reinforced composite (FRC) framework. This in vitro study tested the repair bond strength of restorative composite to aged FRC. The substrate was multiphase polymer matrix FRC (everStick) aged by boiling for 8 h and storing at 37°C in water for 6 weeks. The aged substrate surfaces were wet‐ground flat with 1200‐grit silicon carbide paper and subjected randomly to 5 different surface treatments: 1) An adhesion primer (Composite Activator) and resin (CA), 2) Silane (EspeSil) and resin (SIL‐MP), 3) Silane, adhesive primer, and resin (Clearfil Repair) (CF), 4) Air particle‐abrading (CoJet), silane, and resin (CJ‐SIL‐MP), 5) Resin (Scotchbond Multipurpose Resin) only as control (MP). Restorative composite resin (Z250) was added to the substrate in 2 mm layer increments and light‐cured. Subsequently, every surface treatment group was divided into 2 subgroups of 12 specimens each. The specimens were either 48 h water‐stored or thermocycled (6000 x 5–55°C). The shear bond strengths of composite resin to FRC were measured at a crosshead speed of 1.0 mm/min. The data were analyzed by ANOVA for factors ‘treatment type’ and ‘storage condition’; Tukey's post‐hoc tests and Weibull analysis were performed. ANOVA showed a significant difference as a function of surface treatment (P<0.05) and storage condition (P<0.05). The CJ‐SIL‐MP group showed highest bond strength and Weibull modulus after thermocycling. Repair of multiphase polymer matrix FRC may show reliable bond strength when silane treatment is used along with air‐particle abrading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.