Abstract

Renormalized Hartree-Fock equations are derived for an infinite system of mesons and baryons in the framework of a relativistic quantum field theory. Direct and exchange diagrams in the baryon propagator are summed self-consistently to all orders, and the effects of occupied negative-energy states in the Dirac sea are included. The required counterterm subtractions are defined by conventional renormalization conditions, but they need not be evaluated explicitly. The result is a set of finite nonlinear integral equations for the baryon self-energy that includes vacuum fluctuation effects from virtual N N pairs in the many-body wavefunction at finite density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.