Abstract
We study the flow of the renormalized model parameters obtained from a sequence of simple transformations of the 1D Anderson model with long-range hierarchical hopping. Combining numerical results with a perturbative approach for the flow equations, we identify three qualitatively different regimes at weak disorder. For a sufficiently fast decay of the hopping energy, the Cauchy distribution is the only stable fixed-point of the flow equations, whereas for sufficiently slowly decaying hopping energy the renormalized parameters flow to a delta peak fixed-point distribution. In an intermediate range of the hopping decay, both fixed-point distributions are stable and the stationary solution is determined by the initial configuration of the random parameters. We present results for the critical decay of the hopping energy separating the different regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.