Abstract

P204 To evaluate the importance of the renin angiotensin system (RAS) in VEGF expression and angiogenesis in skeletal muscle, we compared the angiogenic response to electrical stimulation in congenic strains of SS/Jr/Hsd rats using a complementation test design. We have previously demonstrated that both increases in VEGF expression and angiogenesis induced by electrical stimulation of skeletal muscle were absent in inbred Dahl S rats having a wildtype renin allele (S/ren ss ). In contrast, the congenic S/ren rr in which a 10 cM segment of chromosome 13 containing the normally functioning salt resistant renin allele was transferred onto the Dahl S background, exhibit the expected changes in renin. In the present study we investigate the effects of electrical stimulation on VEGF expression and angiogenesis in these rats. Congenic S/ren rr and S/ren ss rats, fed a 0.4% salt diet were surgically prepared by chronic implantation of an electrical stimulator. Another group of S/ren rr rats was treated with lisinopril, 2 days before the surgery and throughout the stimulation protocol. Rats without any drug treatment were used as control. The right tibialis anterior (TA) and extensor digitorum longus (EDL) were stimulated (10 Hz, 0.3 ms duration) for 8 hours per day for 7 days. The contralateral muscles served as controls. Western blot analysis was performed to identify VEGF protein expression in these muscles. Seven days of electrical stimulation of the skeletal muscles produced no change in vessel density of S/ren ss (Δ=5.50 ± 3.8 % and 8.14 ± 2.0 % for EDL and TA respectively). Transfer of the resistant renin allele (S/ren rr ) restored the angiogenic response (Δ=16% and 30% for EDL and TA, respectively) despite a significantly higher blood pressure (113.5 ± 2.25 mmHg and 148.67 ± 1.12 mmHg for S/ren ss and S/ren rr , respectively). Blockade of the RAS in S/ren rr restored the phenotype observed in the S/ren ss (Δ=1.46% and 1.9% to EDL and TA, respectively, p rr . These results demonstrate that RAS plays an important role in the regulation of VEGF expression and angiogenesis in skeletal muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.