Abstract

To study the removal effect of bottom ash of biomass power plants and its modified products on zinc (Zn2+) in aqueous solution, a series of indoor experiments is carried out. The aim of this work is to explore a method to improve the ability of biomass ash to remove Zn2+ from aqueous solution and obtain its adsorption characteristics of Zn2+ in aqueous solution; on this basis, the feasibility of its application in the treatment of Zn2+-contaminated wastewater is analyzed. The mesoporous siliceous material is used to modify the biomass, and the modified material is functionalized with 3-aminopropyltriethoxysilane. The results show that the specific surface area of modified biomass ash is nine times that of the material before modification. The adsorption capacity of Zn2+ on the material increases with the increase of pH, and pH 6 is the optimum pH to remove Zn2+ from the aqueous solution. The Langmuir model and Freundlich model can show better fits for biomass ash and the modified material, respectively. Thermodynamic analysis results show that the adsorption of Zn2+ is spontaneous and endothermic in nature. The adsorption of Zn2+ onto biomass and modified biomass ash follow pseudo-first-order and pseudo-second-order kinetics, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.