Abstract

Poxviruses encode multiple inhibitors of the interferon (IFN) system, acting at different levels and blocking the induction of host defense mechanisms. Two viral gene products, B19 and B8, have been shown to act as decoy receptors of type I and type II IFNs, blocking the binding of IFN to its receptor. Since IFN plays a major role in innate immune responses, in this investigation we asked to what extent the viral inhibitors of the IFN system impact the capacity of poxvirus vectors to activate immune responses. This was tested in a mouse model with single and double deletion mutants of the vaccine candidate NYVAC-C, which expresses the HIV-1 Env, Gag, Pol, and Nef antigens. When deleted individually or in double, the type I (B19) and type II (B8) IFN binding proteins were not required for virus replication in cultured cells. Studies of immune responses in mice after DNA prime/NYVAC boost revealed that deletion of B8R and/or B19R genes improved the magnitude and quality of HIV-1-specific CD8(+) T cell adaptive immune responses and impacted their memory phase, changing the contraction, the memory differentiation, the effect magnitude, and the functionality profile. For B cell responses, deletion of the viral gene B8R and/or B19R had no effect on antibody levels to HIV-1 Env. These findings revealed that single or double deletion of viral factors (B8 and B19) targeting the IFN pathway is a useful approach in the design of improved poxvirus-based vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.