Abstract

Reticulated vitreous carbon (RVC), a high surface area electrode (40cm2/cm3), has been modified with nickel oxide nanoparticles (nano-NiOx) and used for electrochemical oxidation of urea from alkaline solution. For the cyclic voltammetry measurements, the used dimensions are 0.8cm × 0.8cm × 0.3cm. The purpose was to offer high specific surface area using a porous open network structure to accelerate the electrochemical conversion. NiOx nanoparticles have been synthesized via an electrochemical route at some experimental conditions. The morphological, structural, and electrochemical properties of the RVC/nano-NiOx are characterized by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV), and potentiostatic measurements. The fabricated electrode, RVC/nano-NiOx, demonstrates high electrocatalytic activity towards urea oxidation in an alkaline electrolyte. The onset potential of the RVC/nano-NiOx compared to that of the planar GC/NiOx is shifted to more negative value with higher specific activity. The different loadings of the NiOx have a substantial influence on the conversion of urea which has been evaluated from concentration-time curves. The urea concentration decreases with time to a limit dependent on the loading extent. Maximum conversion is obtained at 0.86mg of NiOx per cm3 of the RVC matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.