Abstract
DNA toxic compounds (DNA-T-Cs), even in trace amounts, seriously threaten human health and must be completely eliminated. However, the currently used separation media face great challenges in removing trace DNA-T-Cs. Based on the functional advantages of deep eutectic solvents (DESs) and the natural features of biomass (BioM), a series of Poly(DES)@BioMs functioning as adsorbents were prepared for the removal of aromatic/hetero-atomic DNA-T-Cs at the ppm level. After optimisation of experimental conditions, the removal efficiency for DNA-T-Cs ranged from 92.4% to 96.0% with an initial concentration of 20.0 ppm, a temperature of 30 °C, duration of 30 min, and pH of 7.0. The removal processes between the DNA-T-Cs and Poly(DES)@BioMs are well described in the Temkin equilibrium and second-order kinetic adsorption models, and the desorption processes are well shown in the Korsmeryer–Peppas equilibrium and zero-order kinetic models. Molecular simulations revealed that the removal interactions include hydrogen bonding, π–π stacking, and hydrophobic/hydrophilic effects. The removal efficiency for the DNA-T-Cs at 8.0 ppm in industrial sewage ranged from 69.7% to 102%, while the removal efficiency for the DNA-T-Cs standing alone at 20.0 ppm in a methyl violet drug solution was 95.4%, confirming that the Poly(DES)@BioMs effectively removed trace DNA-T-Cs in field samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.