Abstract

Sodium dodecyl sulfate (SDS) is widely used for protein solubilization and for separation of proteins by SDS polyacrylamide gel electrophoresis (SDS-PAGE). However, SDS interferes with other techniques used for characterization of proteins, such as mass spectrometry (MS) and amino acid sequencing. In this paper, we have compared three procedures to remove SDS from proteins, including chloroform/methanol/water extraction (C/M/W), cold acetone extraction and desalting columns, in order to find a rapid and reproducible procedure that provides sufficient reduction of SDS and high recovery rates for proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). A 1000-fold reduction of SDS concentration and a protein recovery at approximately 50% were obtained with the C/M/W procedure. The cold acetone procedure gave a 100-fold reduction of SDS and a protein recovery of approximately 80%. By using desalting columns, the removal of SDS was 100-fold, with a protein recovery of nearly 50%. Both the C/M/W and the cold acetone methods provided sufficient reduction of SDS, high recovery rates of protein and allowed the acquisition of MALDI spectra. The use of n-octyl-β-D-glucopyranoside in the protein sample preparation enhanced the MALDI signal for protein samples containing more than 2 10−4% SDS, after the C/M/W extraction. Following the cold acetone procedure, the use of n-octylglucoside was found to be necessary in order to obtain spectra, but they were of lower quality than those obtained with the C/M/W method, probably due to higher residual amounts of SDS. Copyright­© 1999 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.