Abstract

This research utilized tetraethylenepentamine-functionalized HY cubic zeolite as an adsorbent to effectively remove heavy metals from aqueous solutions. The adsorbent was characterized using FT-IR, XRD, TGA, FE-SEM, and EDS-MAP techniques. The synthesis aimed to optimize and evaluate the removal efficiency of Pb(II), Cr(III), Co(II), and Cu(II) from aqueous solutions by investigating key parameters, including initial pH, concentration, adsorbent dosage, and contact time. The results indicate that the highest adsorption capacities for each metal follow the order: Pb(II) > Cr(III) > Co(II) > Cu(II), with respective percentages of 99.7%, 98.2%, 95.1%, and 92.4%. Analysis of the batch systems reveals that the equilibrium data for Pb(II), Cr(III), Co(II), and Cu(II) align well with the Langmuir and Freundlich isotherms also show a good fit, with correlation coefficients (R2) higher than 0.9335 and 0.9478, respectively. The maximum adsorption capacities (181.82, 175.44, 169.49, and 158.73mg/g) reflect the nature of the adsorption process. Kinetic studies for Pb(II), Cr(III), Cu(II), and Cu(II) yielded correlation coefficients (R2) higher than 0.9971. These high R2 values suggest that the experimental data closely fit a pseudo-second-order model, indicating a two-step adsorption mechanism. Heavy metal removal is attributed to ion exchange and chemisorption within the zeolite pores, involving interactions with nitrogen lone pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.