Abstract

The effect of temperature, sulphate and phosphate, and the initial nitrate concentration on nitrate removal was studied with synthetic solutions. Chemically modified pine sawdust (Pinus sylvestris) anion exchange resin (MPSD) was used in the sorption studies. The resin was synthesized by reacting pine sawdust with epichlorohydrin, ethylenediamine and triethylamine in the presence of N,N-dimethylformamide. Nitrate removal was successful at 5–70 °C. Higher temperatures caused nitrate removal to decrease moderately, but sorption capacities of 22.2–32.8 mg/g for NO3–N were achieved. The removal of nitrate in the presence of sulphate or phosphate was studied at concentrations of 30 mg N/l, 10–500 mg S/l and 1–50 mg P/l. A significant decrease in nitrate reduction was observed at sulphate and phosphate concentrations of 100 mg S/l and 50 mg P/l, respectively. The effect of initial nitrate concentration was studied in column. Nitrate sorption was clearly dependent on the initial concentration. Desorption of nitrate in column was completed using about 80 bed volumes of 0.1 M NaCl solution. The sorption data were fitted to the Langmuir, Freundlich and Redlich–Peterson adsorption models. The Redlich–Peterson and Langmuir models gave the best fit, which suggests monolayer sorption. Thermodynamic studies revealed that the sorption of nitrate was spontaneous and exothermic in nature. The results imply that modified pine sawdust could be a feasible alternative in the treatment of real industrial wastewaters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.