Abstract

The removal of lincomycin (LIN) from aqueous solution by birnessite was investigated by batch experiments. When the dosage of birnessite is 500 mg L-1 and the initial concentration of LIN is 15.5 μmol L-1, more than 90% of LIN was removed within 240 min at pH 4.90. Under different conditions, the reactions were well fitted with the second-order model (R2 > 0.95). The removal kinetics and the reaction mechanism were described. The presence of cations (e.g., K+, Ca2+, Mg2+, Fe2+, and Mn2+) inhibited the removal of LIN by birnessite, following the order: Mn2+ > Fe2+ > Ca2+ > Mg2+ > K+ ≈ Na+, due to the sorption of cations on birnessite, companying with the electron transfer and precipitation of oxides (for Mn2+ and Fe2+). The addition of Cu2+, SO42-, or NO3- improved the reactions. The presence of Cu2+ could oxidize antibiotics, and the repulsion between SO42-or NO3- and birnessite might disperse the birnessite suspensions during the reactions. Mn(IV) and Mn(III) were the core Mn species that play an important role in LIN removal. These findings will help to understand the removal process of LIN and illustrate the influence of cations and anions on the removal of similar pollutants by birnessite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.