Abstract

For the first time, the present study removes ions of mercury, in the form of Hg (I) and Hg (II) ions, from aqueous solutions by adsorbing them onto titanium dioxide nanoparticles. The effects of various parameters, such as solution's initial pH, temperature, sorbent dosage, initial mercury concentration, and contact time have been examined on the adsorption process. The experimental results have been compared with Langmuir, Freundlich, and Temkin adsorption isotherms. The maximum adsorption, obtained for Hg (I) and Hg (II) ions, have been 97.5% and 98.6%, respectively. Also, it has been shown that the Langmuir isotherm has better fitting with the equilibrium data than the Freundlich and Temkin isotherms. Thermodynamic parameters of the adsorption, such as and have been calculated, the negative values of which show that the mercury ions adsorption is an exothermic process and that randomness is decreased, respectively. The study of adsorption kinetics shows that the adsorption of Hg (I) and (II) ions with TiO2 nanoparticles is pseudo-second order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.