Abstract

Bauxite residue is the by-product of the aluminium industry with an annual output of more than 200 million metric tons in China. Its treatment is still a big problem because more than 96% of that is stockpiled on land causing environmental pollution and threatening the human health. This study used bauxite residue to remove Cr (Ⅲ) from aqueous solution and analyzed the removal mechanism. The removal time was dependent on the initial concentrations of Cr (Ⅲ) and different active components acted on different reaction period. Reaction time increased from <5min to >2h with an increase of Cr (Ⅲ) concentration from 5 to 100 and 170mg/L. The existing forms of adsorbed-Cr were iron oxide-bound Cr (40.80%-87.85%), sulfide-bound Cr (4.04%-20.28%) and residue (6.60%-33.72%). All the components started to react as soon as bauxite residue was added. Cr did not precipitate in the presence of high alkalinity bauxite residue due to the slow release of alkalinity maintaining pH<6, thus producing Cr(OH)2+, Cr2(OH)24+ and Cr3(OH)45+ by hydrolysis without precipitation. Fe2O3 and Al-containing components were the main active phases for Cr (Ⅲ) removal, with the reaction time lasting more than 2h and producing Ca6Al4Cr2O15, AlCr2, (Si, Al)2O4, Fe(Cr, Al)2O4, FeCr2Si3O12, MgCr0·1Fe1·9O4 and MgCr0·4Fe1·6O4. Finally, bauxite residue was granulated and used for column tests. Cr (Ⅲ) wastewater (1 and 50mg/L) was treated and the effluent can meet the first level of the Shanghai standard (0.1mg/L) defined by Integrated Wastewater Discharge Standard (DB 31/199-2009).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.