Abstract

Chicken feather, which is consisted of keratin, has always been abandoned as solid waste. The utilization technologies of waste keratin have been developed in electric zones and materials fields so far. Recently, numerous new types of adsorbents have been used for antibiotic removal. The chicken feather carbon is supposed to be a potential one. In this study, an activated feather carbon (AFC) was developed as the absorbent of amoxicillin (AMOX) in simulated wastewater. The micropore structures of AFC were detected by the scanning electron microscope (SEM). X-ray photoelectron spectrum (XPS) was recorded and analyzed. A BET surface area, as high as 1838.86 m2/g, was measured in this study. At the meantime, a rapid adsorption (5∼7 min) and high removal efficiency (99.63%) could be observed. The kinetics, isotherms, and thermodynamic studies indicated that the adsorption of AMOX by AFC was an exothermic physic-adsorption. The interaction between AMOX and AFC surface was supposed to be a multiple-layer adsorption process for it is well fitted with the Freundlich model. The adsorption behavior could be described by pseudo-second-order model almost perfectly in kinetic studies. In addition, effect of pH, ionic strength, and reusability properties were also discussed in this paper. The AFC was proved to be the most rapid, efficient, and economically absorbent for AMOX removal, which was effective enough under various temperatures and saline circumstances. It was also proved useful, convenient, and renewable in dealing with the tough antibiotic pollutant problems and rebuilding of antibiotic sewage treatment facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.