Abstract

The increasing amount of nanoparticles with the development of nanotechnology gives rise to concerns about potential negative impact on the environment and health hazards posed to humans. Membrane filter is an effective media to control nanoparticles. Three filters coated with polytetrafluoroethylene (PTFE) membrane were investigated in this study. A series of experiments on the filter efficiency and relevant parameters such as the particle size and face velocity were carried out. The data show that the efficiency curves for the membrane filters demonstrate the typical shape of “v” for particle sizes from 10 to 300 nm at face velocities from 0.3 to 15 cm/s. Membrane filters with larger pore sizes have larger Most Penetrating Particles Sizes (MPPS), and the MPPS decreases with increasing face velocity. The efficiencies decrease with increasing face velocity for particle sizes from 10 to 300 nm. We present the filtration efficiency data as a novel three-dimensional graph to illustrate its dependence on the particle size and face velocity. The membrane coated filter can be considered as two combined layers, one fibrous layer and one membrane layer. We develop a new filtration efficiency model which is a combination of the models for the two layers. Results from the model calculation agree with experimental data well. The study can help to optimize the filter product and to determine the operational parameters of filters, thus contributing to reduction of air pollution by rapidly emerging nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.