Abstract
In recent years, the break of COVID-19 makes the large use of disposable products, which causes the removal of microplastics become an imperative problem. Electrocoagulation is one of the effective removal technologies, but there is hardly research concentrating on the effect of substrate in the actual water on the microplastics removal with electrocoagulation. As an important role of water bodies, dissolved organic matter (DOM) has a vital and inevitable effect on the efficiency of electrocoagulation. In this study, the effect of DOM in tailwater on microplastics during electrocoagulation is elucidated by comparing the electrocoagulation treatment results between simulated wastewater and tailwater, using parallel factor analysis (PARAFAC), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectrometer (FTIR) and zeta potential analyzer. Three kinds of microplastic particles (i.e. polypropylene, polyethylene, and polymethyl methacrylate) were added into each of the two kinds of wastewaters to form six electrocoagulation systems. Results show that DOM in tailwater promotes the production of flocs and free radicals during electrocoagulation process. Fe2+ and Fe3+ are adsorbed on the surface of DOM molecules and combined with •OH form flocs. Although DOM accelerates the production of free radicals and thus promotes the aging of microplastics, flocs with DOM as crystal nucleus can prevent toxic substances and small-sized microplastics from leaching into water again. Therefore, electrocoagulation is preferred to removal microplastics in water with high concentration of DOM. This study provides a significant reference for microplastics removal by electrocoagulation in actual water, and promote the practical application of electrocoagulation for microplastics removal in water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.