Abstract

Fusing high-spatial resolution panchromatic and high-spectral resolution multispectral images with complementary characteristics provides basis for complex land-use and land-cover type classifications. In this research, we investigated how well different pan sharpening algorithms perform when applied to single-sensor single-date and multi-senor multi–date images that encompass the Horton Plains national park (HPNP), a highly fragile eco-region that has been experiencing severe canopy depletion since 1970s, in Sri Lanka. Our aim was to deliver resolution-enhanced multitemporal images from multiple earth observation (EO) data sources in support of long-term dieback monitoring in the HPNP. We selected six candidate fusion algorithms: Brovey transform, Ehlers fusion algorithm, high-pass filter (HPF) fusion algorithm, modified intensity-hue-saturation (MIHS) fusion algorithm, principal component analysis (PCA) fusion algorithm, and the wavelet-PCA fusion algorithm. These algorithms were applied to eight different aerial and satellite images taken over the HPNP during last five decades. Fused images were assessed for spectral and spatial fidelity using fifteen quantitative quality indicators and visual inspection methods. Spectral quality metrics include correlation coefficient, root-mean-square-error (RMSE), relative difference to mean, relative difference to standard deviation, spectral discrepancy, deviation index, peak signal-to-noise ratio index, entropy, mean structural similarity index, spectral angle mapper, and relative dimensionless global error in synthesis. The spatial integrity of fused images was assessed using Canny edge correspondence, high-pass correlation coefficient, RMSE of Sobel-filtered edge images, and Fast Fourier Transform correlation. The Wavelet-PCA algorithm exhibited the worst spatial improvement while the Ehlers.MIHS and PCA fusion algorithms showed mediocre results. With respect to our multidimensional quality assessment,the HPF emerged as the best performing algorithm for single-sensor single-date and multi-sensor multi-date data fusion.We further examined the effect of fusion in the object-based image analysis framework. Our subjective analysis showed the improvement of image object candidates when panchromatic images’ high-frequency information is injected to low resolution multispectral images.

Highlights

  • Forest ecosystems in developing countries are being depleted at alarming rates [1,2]

  • The central objective of this research is to investigate how well different fusion algorithms when applied to singlesensor single-date and multi-senor multi–date images taken over the Horton Plains national park representing crucial time intervals

  • We had to use a true-color composite for the Advanced Land Imager (ALI) (2004) single-sensor fusion Fused images along with their original images were inspected by two photo-interpretation experts to identify any spectral distortions, and spatial improvement

Read more

Summary

Introduction

Forest ecosystems in developing countries are being depleted at alarming rates [1,2]. The country harbors two world-heritage nature reserves designated by the United Nations Educational, Scientific and Cultural Organization (UNESCO). Sri Lanka has been experiencing severe depletion of its biodiversity owing to overwhelming anthropogenic stresses acting on forest ecosystems. The Horton Plains National Park (HPNP) is a UNESCO designated world heritage nature reserve, which is located in the Central Highlands of Sri Lanka. This fragile eco-region provides habitats for nearly half of Sri Lanka’s endemic flowering plants and endemic vertebrates [6,7]. Apart from invaluable ecological richness, HPNP’s serene landscape has made an inextricable link to Sri Lanka’s tourism industry

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.