Abstract

The present study explores the potential application of unmanned aerial vehicle (UAV) Infrared Thermography for detecting subsurface delaminations in concrete bridge decks, which requires neither traffic interruption nor physical contact with the deck being inspected. A UAV-borne thermal imaging system was utilized to survey two in-service concrete bridge decks. The inspection process involved the acquisition of thermal images via low altitude flights using a high resolution thermal camera. The images were then enhanced and stitched together using custom developed codes to create a mosaic thermal image for the entire bridge deck. Image analysis based on the k-means clustering technique was utilized to segment the mosaic and identify objective thresholds. Hence, a condition map delineating different categories of delamination severity was created. The results were validated using data generated by other non-destructive testing technologies on the same bridge decks, namely hammer sounding and half-cell potential testing. The findings reveal that UAV with high-resolution thermal infrared imagery offers an efficient tool for precisely detecting subsurface anomalies in bridge decks. The proposed methodology allows more frequent and less costly bridge deck inspection without traffic interruption. This should enable rapid bridge condition assessment at various service live stages, thus effectively allocating maintenance and repair funds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.