Abstract
BackgroundMalaria is one of the leading public health problems in most of sub-Saharan Africa, particularly in Ethiopia. Almost all demographic groups are at risk of malaria because of seasonal and unstable transmission of the disease. Therefore, there is a need to develop malaria early-warning systems to enhance public health decision making for control and prevention of malaria epidemics. Data from orbiting earth-observing sensors can monitor environmental risk factors that trigger malaria epidemics. Remotely sensed environmental indicators were used to examine the influences of climatic and environmental variability on temporal patterns of malaria cases in the Amhara region of Ethiopia.MethodsIn this study seasonal autoregressive integrated moving average (SARIMA) models were used to quantify the relationship between malaria cases and remotely sensed environmental variables, including rainfall, land-surface temperature (LST), vegetation indices (NDVI and EVI), and actual evapotranspiration (ETa) with lags ranging from one to three months. Predictions from the best model with environmental variables were compared to the actual observations from the last 12 months of the time series.ResultsMalaria cases exhibited positive associations with LST at a lag of one month and positive associations with indicators of moisture (rainfall, EVI and ETa) at lags from one to three months. SARIMA models that included these environmental covariates had better fits and more accurate predictions, as evidenced by lower AIC and RMSE values, than models without environmental covariates.ConclusionsMalaria risk indicators such as satellite-based rainfall estimates, LST, EVI, and ETa exhibited significant lagged associations with malaria cases in the Amhara region and improved model fit and prediction accuracy. These variables can be monitored frequently and extensively across large geographic areas using data from earth-observing sensors to support public health decisions.
Highlights
Malaria is one of the leading public health problems in most of sub-Saharan Africa, in Ethiopia
Environmental variables that were included in the final models as predictors were rainfall, land-surface temperature (LST), enhanced vegetation index (EVI), and ETa
Rainfall was positively associated with malaria cases at five of the sites (South Achefer, Ankasha Guagusa, Berehet, Bati, and Meket) with a time lag of one to three months
Summary
Malaria is one of the leading public health problems in most of sub-Saharan Africa, in Ethiopia. There is a need to develop malaria early-warning systems to enhance public health decision making for control and prevention of malaria epidemics. Sensed environmental indicators were used to examine the influences of climatic and environmental variability on temporal patterns of malaria cases in the Amhara region of Ethiopia. Malaria transmission is seasonal in Ethiopia and varies across the country depending on climatic and ecological factors favourable to disease-transmitting vector and parasite health decision making for control and prevention of malaria epidemics. The availability of spatially extensive and temporally consistent data from earth-observing sensors offers a source of environmental information for the development of epidemiological forecasting models. Measurements of the spatial and temporal patterns of environmental conditions that influence parasite development and the mosquito life cycle can be obtained by using remotely sensed data [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.