Abstract
With the advent of “social sensing” in the Big Data era, location-based social media (LBSM) data are increasingly used to explore anthropogenic activities and their impacts on the environment. This study converts a typical kind of LBSM data, geo-tagged tweets, into raster images at the 500 m spatial resolution and compares them with the new generation nighttime lights (NTL) image products, the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) monthly image composites. The results show that the monthly tweet images are significantly correlated with the VIIRS-DNB images at the pixel level. The tweet images have nearly the same ability on estimating electric power consumption and better performance on assessing personal incomes and population than the NTL images. Tweeted areas (i.e. the pixels with at least one posted tweet) are closer to satellite-derived built-up/urban areas than lit areas in NTL imagery, making tweet images an alternative to delimit extents of human activities. Moreover, the monthly tweet images do not show apparent seasonal changes, and the values of tweet images are more stable across different months than VIIRS-DNB monthly image composites. This study explores the potential of LBSM data at relatively fine spatiotemporal resolutions to estimate or map socioeconomic factors as an alternative to NTL images in the United States.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.