Abstract

A novel photonic method for remote monitoring of task-related hemodynamic changes in human brain activation is presented. Physiological processes associated with neural activity, such as nano-vibrations due to blood flow and tissue oxygenation in the brain, are detected by remote sensing of nano-acoustic vibrations using temporal spatial analysis of defocused self-interference random patterns. Temporal nanometric changes of the speckle pattern due to visual task-induced hemodynamic responses were tracked by this method. Reversing visual checkerboard stimulation alternated with rest epochs, and responsive signals were identified in occipital lobe using near-infrared spectroscopy. Temporal vibrations associated with these hemodynamic response functions were observed using three different approaches: (a) single spot illumination at active and control areas simultaneously, (b) subspots cross-correlation-based analysis, and (c) multiwavelength measurement using a magnitude-squared wavelet coherence function. Findings show remote sensing of task-specific neural activity in the human brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.