Abstract
In this paper a remote phonon scattering of channel electrons in a field-effect transistor (FET) with a high dielectric constant (κ) insulator in between the gate and the channel is studied theoretically. The spectrum of phonons confined in the high κ layer and its modification by the gate screening is investigated. Only two phonon modes of five participate in the remote electron-phonon scattering. The gate suppresses one of the modes but increases scattering by the other. Numerical results for the channel mobility limited only by remote phonon scattering were obtained for a Si FET with a HfO2 layer and a SiO2 layer in between the channel and metallic gate. A surprising result is the reduction of the mobility compared to the case when the gate screening is absent. The dependence of the mobility on the widths of HfO2 and interfacial SiO2 layers on channel concentration and temperature was studied. The accuracy of the calculations based on the Boltzmann equation is discussed. Finally, a comparison of our results with available experimental data leads to the conclusion that the remote phonon scattering is not the dominating scattering mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.