Abstract

The recent advances in technology are opening a new opportunity to remotely evaluate motor features in people with Parkinson's disease (PD). We hypothesized that typing on an electronic device, a habitual behavior facilitated by the nigrostriatal dopaminergic pathway, could allow for objectively and nonobtrusively monitoring parkinsonian features and response to medication in an at-home setting. We enrolled 31 participants recently diagnosed with PD who were due to start dopaminergic treatment and 30 age-matched controls. We remotely monitored their typing pattern during a 6-month (24 weeks) follow-up period before and while dopaminergic medications were being titrated. The typing data were used to develop a novel algorithm based on recursive neural networks and detect participants' responses to medication. The latter were defined by the Unified Parkinson's Disease Rating Scale-III (UPDRS-III) minimal clinically important difference. Furthermore, we tested the accuracy of the algorithm to predict the final response to medication as early as 21 weeks prior to the final 6-month clinical outcome. The score on the novel algorithm based on recursive neural networks had an overall moderate kappa agreement and fair area under the receiver operating characteristic (ROC) curve with the time-coincident UPDRS-III minimal clinically important difference. The participants classified as responders at the final visit (based on the UPDRS-III minimal clinically important difference) had higher scores on the novel algorithm based on recursive neural networks when compared with the participants with stable UPDRS-III, from the third week of the study onward. This preliminary study suggests that remotely gathered unsupervised typing data allows for the accurate detection and prediction of drug response in PD. © 2019 International Parkinson and Movement Disorder Society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.