Abstract

Amorphous hydrogenated silicon carbide (a-SiC:H) films produced by remote microwave hydrogen plasma chemical vapor deposition from dimethylsilane and trimethylsilane precursors were characterized in terms of their basic useful properties including surface morphology, conformality of coverage, density, refractive index, optical absorption (absorption coefficient and optical bandgap) adhesion to a substrate, and friction coefficient. The effect of substrate temperature (varied in the range TS=30–400°C) on the properties of a-SiC:H films is reported. In view of the scanning electron microscopy and atomic force microscopy examinations the films were found to be morphologically homogeneous materials exhibiting excellent conformality of coverage and small surface roughness, which drop with rising TS to a small value of 0.9nm at TS=400°C. The relationships between the film compositional and structural parameters, expressed, respectively, by the atomic ratio Si/C, and the relative integrated intensities of the absorption IR band from the SiC bonds (controlled by TS), were determined. Due to their good conformality of coverage, strong adhesion to a substrate, very low friction coefficient, and excellent optical transparency in a wide range of wavelength a-SiC:H films produced from trimethylsilane precursor at high substrate temperature regime (TS=300–400°C) seem to be useful as scratch-resistant protective coatings for optical glass elements and various metal surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.