Abstract

Sulfur oxide (SOx) from seagoing ships contribute to local air pollution in cities and coastal areas around the world. Sulfur dioxide (SO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> ) emissions in particular, are a precursor to acid rain and atmospheric particulates leading to ocean acidification which can contribute to negative human health outcomes <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The International Convention for the Prevention of Pollution from Ships (MARPOL) defines limits on the sulfur content in ship fuel oils, since the sulfur is ultimately released into the atmosphere through the ship's exhaust system as sulfur dioxide (SO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> ). This application note describes the use of remote hyperspectral imaging data collected using the Telops Hyper-Cam along with signal processing techniques to provide rapid and accurate estimation of sulfur content in fuel oils. Comparison between the retrieved sulfur content in the fuel of several ships with data from bunker delivery notes provided by the ship's owner and in situ measurements performed by Transport Canada are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.