Abstract

Two different remote nondestructive testing (NDT) techniques, the acoustic-laser and imaging radar techniques, are studied for near-surface defect detection in fiber-reinforced polymer (FRP) retrofitted systems. In the acoustic-laser technique, the targeted structure is excited by acoustic waves, while vibration data on a measurement point is remotely collected. In the imaging radar technique, radar signals (electromagnetic waves) are remotely emitted toward the target structure and measured when they are reflected from the structure. Three FRP-bonded concrete cylinders with various defect sizes were fabricated for laser and radar measurements. The pros and cons of these two techniques are described with the support of experimental result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.