Abstract

Farm managers are becoming increasingly aware of the spatial variability in crop production with the growing availability of yield monitors. Often this variability can be related to differences in soil properties (e.g., texture, organic matter, salinity levels, and nutrient status) within the field. To develop management approaches to address this variability, high spatial resolution soil property maps are often needed. Some soil properties have been related directly to a soil spectral response, or inferred based on remotely sensed measurements of crop canopies, including soil texture, nitrogen level, organic matter content, and salinity status. While many studies have obtained promising results, several interfering factors can limit approaches solely based on spectral response, including tillage conditions and crop residue. A number of different ground-based sensors have been used to rapidly assess soil properties “on the go” (e.g., sensor mounted on a tractor and data mapped with coincident position information) and the data from these sensors compliment image-based data. On-the-go sensors have been developed to rapidly map soil organic matter content, electrical conductivity, nitrate content, and compaction. Model and statistical methods show promise to integrate these groundand image-based data sources to maximize the information from each source for soil property mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.