Abstract
Polarized epithelial cells have a distinctive apical-basal axis of polarity for vectorial transport of ions and solutes across the epithelium. In contrast, migratory mesenchymal cells have a front-rear axis of polarity. During development, mesenchymal cells convert to epithelia by coalescing into aggregates that undergo epithelial differentiation. Signaling networks and protein complexes comprising Rho family GTPases, polarity complexes (Crumbs, PAR, and Scribble), and their downstream effectors, including the cytoskeleton and the endocytic and exocytic vesicle trafficking pathways, together regulate the distributions of plasma membrane and cytoskeletal proteins between front-rear and apical-basal polarity. The challenge is to understand how these regulators and effectors are adapted to regulate symmetry breaking processes that generate cell polarities that are specialized for different cellular activities and functions.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.