Abstract

Quasi-set theory has been proposed as a means of handling collections of indiscernible objects. Although the most direct application of the theory is quantum physics, it can be seen per se as a non-classical logic (a non-reflexive logic). In this paper we revise and correct some aspects of quasi-set theory as presented in [12], so as to avoid some misunderstandings and possible misinterpretations about the results achieved by the theory. Some further ideas with regard to quantum field theory are also advanced in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.