Abstract

The alarming increase in pesticide residues poses a major threat to aquatic and natural habitats. Therefore, it has become essential to design extremely operationally and economically advantageous systems for the removal of carbofuran pesticides from wastewater. Here, an aluminum-based metal-organic framework (MOF), MIL-53-NH2, and its modified forms, MIL-53-NH-ph, MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn, and MIL-53-NH-ph-Cu, have been successfully synthesized. Full characterization using IR, 1HNMR, XRD, and SEM was carried out. The prepared MOFs have been utilized as effective adsorbents for carbofuran in aqueous solutions. The various factors affecting the adsorption process (pH, time, and adsorbate concentration) were also investigated. Spectroscopic approaches were used to investigate the adsorption mechanisms. A mixture of π-π stacking contact, coordination bonding, and hydrogen bond formation can be connected to the current process. The adsorption of carbofuran from aqueous solutions was best described by pseudo-second-order kinetics and Langmuir equilibrium isotherm models. MIL-53-NH2, MIL-53-NH-Ph, MIL-53-NH-Ph-Fe, MIL-53-NH-Ph-Zn, and MIL-53-NH-Ph-Cu demonstrated adsorption capacities of 367.8, 462.1, 662.94, 717.6, and 978.6 mg g−1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.