Abstract
Lithium-ion batteries are widely used as power sources in various portable electronics, hybrid electric vehicles, aeronautic and aerospace engineering, etc. To ensure an uninterruptible power supply, the remaining useful life (RUL) prediction of lithium-ion batteries has attracted extensive attention in recent years. This paper proposed an improved unscented particle filter (IUPF) method for lithium-ion battery RUL prediction based on Markov chain Monte Carlo (MCMC). The method uses the MCMC to solve the problem of sample impoverishment in UPF algorithm. Additionally, the IUPF method is proposed on the basis of UPF, so it can also suppress the particle degradation existing in the standard PF algorithm. In this work, the IUPF method is introduced firstly. Then, the capacity data of lithium-ion batteries are collected and the empirical capacity degradation model is established. The proposed method is used to estimate the RUL of lithium-ion battery. The RUL prediction results demonstrate the effectiveness and advantage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.