Abstract
PurposeWith the rapid development and stable operated application of lithium-ion batteries used in uninterruptible power supply (UPS), the prediction of remaining useful life (RUL) for lithium-ion battery played an important role. More and more researchers paid more attentions on the reliability and safety for lithium-ion batteries based on prediction of RUL. The purpose of this paper is to predict the life of lithium-ion battery based on auto regression and particle filter method.Design/methodology/approachIn this paper, a simple and effective RUL prediction method based on the combination method of auto-regression (AR) time-series model and particle filter (PF) was proposed for lithium-ion battery. The proposed method deformed the double-exponential empirical degradation model and reduced the number of parameters for such model to improve the efficiency of training. By using the PF algorithm to track the process of lithium-ion battery capacity decline and modified observations of the state space equations, the proposed PF + AR model fully considered the declined process of batteries to meet more accurate prediction of RUL.FindingsExperiments on CALCE dataset have fully compared the conventional PF algorithm and the AR + PF algorithm both on original exponential empirical degradation model and the deformed double-exponential one. Experimental results have shown that the proposed PF + AR method improved the prediction accuracy, decreases the error rate and reduces the uncertainty ranges of RUL, which was more suitable for the deformed double-exponential empirical degradation model.Originality/valueIn the running of UPS device based on lithium-ion battery, the proposed AR + PF combination algorithm will quickly, accurately and robustly predict the RUL of lithium-ion batteries, which had a strong application value in the stable operation of laboratory and other application scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Computing and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.