Abstract

Nonlinear degradation trajectories are encountered frequently, and not all of them evolve homogeneously in practical systems. To take nonlinearity, heterogeneity, and the entire historical degradation data into account, we propose a nonlinear heterogeneous Wiener process model with an adaptive drift to characterize degradation trajectories. A state-space based method is employed to delineate our model. Due to the introduction of the adaptive drift, it is difficult to directly apply Kalman filter methods to update the distribution of the estimated degradation drift. To address this issue, we develop an online filtering algorithm based on Bayes' theorem. The expectation-maximization (EM) algorithm, as well as a novel Bayes'-theorem-based smoother, are adopted to estimate the unknown parameters in our model. Moreover, the distribution of the predicted remaining useful life (RUL) incorporating the complete distribution of the estimated degradation drift is achieved analytically. Finally, a simulation, and a case study are provided to validate the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.