Abstract

An Mw 6.8 earthquake occurred on October 25, 2018, 35 km offshore from the southwest coastlines of Zakynthos Island. The aftershock sequence appeared remarkably productive with six aftershocks of M ≥ 5.0 in the first month and tens of aftershocks with M ≥ 4.0 during the study period. The GCMT solution for the main shock suggests a very low angle plane (dip = 24°) for a dextral strike–slip faulting (rake = 165°). A similar solution is suggested for the largest aftershock (Mw 5.9) that occurred 5 days afterward. The proximity of the main shock location with the dextral active boundary of Kefalonia Transform Fault Zone (KTFZ) along with the Hellenic Subduction front supports this oblique faulting. The aftershock activity is comprised mostly in depths 5–12 km and forms eight distinctive clusters that accommodate regional strain and evidence strain partitioning. The role of stress transfer and statistical analysis are combined for detailing the highly productive aftershock sequence. Earthquake networks analysis reveals their random structure soon after the main shock, which became small-world structure after the first 200 days. Time series analysis constructed from the aftershock frequency and seismic moment release and manifested significant correlation among the eight seismicity clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.