Abstract

Chemisorption of glycine on Si(100) has been studied by an integrated computational strategy based on perturbative anharmonic computations employing geometries and harmonic force fields evaluated by hybrid density functionals coupled to purposely tailored basis sets. It is shown that such a strategy allows the prediction of spectroscopic properties of isolated and chemisorbed molecules with comparable accuracy, paving the route toward a detailed analysis of surface-induced changes of glycine vibrational spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.