Abstract

Method validation is important in analytical chemistry to obtain the reliability of an analytical method. Guidelines provided by the regulatory bodies can be used as a general framework to assess the validity of a method. Since these guidelines do not focus on the reliability of analytical results exclusively, this study was aimed to combine a few recently evolved strategies that may render analytical method validation more reliable and trustworthy. In this research, the analytical error function was determined by appropriate polynomial regression statistics that determine the range of analyte concentration that may lead to more accurate measurements by producing the least possible total error in the assay and can be regarded as a reliable weighting method. The reliability of the analytical results over a particular concentration range has been proposed by a Bayesian probability study. In order to ensure the applicability of this approach, it was applied for the validation of an HPLC-UV assay method dedicated to the quantification of cefepime and tazobactam in human plasma. A comparison between the newer approach and the usual method validation revealed that the application of analytical error function and Bayesian analysis at the end of the validation process can produce significant improvements in the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.