Abstract

PurposeThe purpose of this paper is to optimize the design of a hybrid tether using probabilistic approach considering inherent random variation in the stress developed and the strength it has. The variation in strength is mostly because of variation in diameter of the tether and the properties of the material along the length of the tether. As a result, classical design approach for the tether may not serve the purpose. For this purpose, a reliability-based design of hybrid tether is discussed in this paper.Design/methodology/approachA literature review was carried out on the design of tether and its operational reliability. It has been shown that the classical design approach does not serve the purpose, as the strategic operation has to be reliable enough, often requiring a measure of reliability required. A reliability-based approach has been presented to achieve the optimum design of a hybrid tether.FindingsThe optimization problem was carried out for different values of the safety factor to investigate the effect on the optimal design of tether. An analysis is carried out to show that one should not target a very high value of reliability or factor of safety, as it causes the self-weight of the tether to increase tremendously and its cost significantly.Research limitations/implicationsThe present work has been carried out considering the limited data and can further be extended to determine more accurate reliability measures by considering more number of sample test data. The measured data is collected from limited required trials for demo; do not represent the exact population data.Originality/valueLab strength test and flight trials were conducted to acquire data for the present analysis. In field use, it was noticed that the tether degraded from top portion attached toward the balloon end because of maximum exposure and repeated usage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.