Abstract

During tunnel construction, the ground properties, initially evaluated, are continuously assessed and verified through back analysis. This procedure generally requires many numerical analyses, so a metamodel based on artificial neural networks has been used to reduce the number of analyses. More datasets can be used to create more reliable metamodels. However, there are no established rules regarding the optimum number of datasets for a reliable metamodel. Metamodels predicting the vertical displacement of the tunnel crown using five ground parameters (unit weight (γ), uniaxial compressive strength (UCS), material constant mi, geological strength index (GSI), and coefficient of lateral pressure (K)), with 3, 4, 6, 8, and 10 values per property, were created to confirm the reliability of the metamodel based on the number of datasets in this study. Metamodels using 6 and 8 values for each property showed 5% and 1% mean absolute percent errors, respectively. These numbers of each of the properties would be appropriate for developing the metamodel. Among the five parameters, only the results of the global sensitivity analyses of GSI and K are higher than 0.9. According to these results, it is verified that assessments based only on these parameters are sufficient in the back analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.