Abstract

In this paper, we consider a repairable system consisting of M primary components, S spare components, and a repairman. In cases where none of the components in the system is failed, the repairman leaves the system for multiple vacations. During a vacation period, the repairman lowers the repair rate rather than halting repairs together. The system does not include a waiting space. If a failed component finds the repairman free upon arrival, then it immediately occupies the repairman and is being repaired. If a failed component does not find a free repairman upon arrival, then it leaves the service area to join the retrial group (orbit) to try again for a repair. For this system, the matrix-analytic method is used to compute the steady-state availability. We develop the reliability function and mean-time-to-failure (MTTF) based on the Laplace transform technique. Numerical examples are given to assess the effects of system parameters on the system reliability, MTTF, and steady-state availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.