Abstract

In order to improve the computational accuracy and efficiency of response surface method for reliability analysis on structures, a modified iterative response surface method (called as NDIRSM) is proposed. Firstly, a new starting center point, which is closer to design point, is calculated out as the starting center point instead of the point at mean values of input variables and a dynamic factor vectorf1, which is inversely proportional to the change rate of performance function with respect to variance, is calculated out for the first iteration. Then the arbitrary factorsfkare determined according to the design matrix condition number for the subsequent iteration. Thus the sample points are close to limit state function and the response surface function can approximate the limit state function accurately and efficiently. Two examples are employed to validate the advantages of NDIRSM and the results show that NDIRSM improves the computational accuracy and efficiency of response surface method. At last, NDIRSM is applied to the reliability analysis on low cycle fatigue life of a gas turbine disc, which provides a useful reference for reliability analysis on low cycle fatigue life of gas turbine disc and demonstrates the high computational accuracy and efficiency of NDIRSM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.