Abstract

For randomly degraded products undergoing a two-stage degradation process, traditional random effects models assume that the degradation rate follows a symmetrically normal distribution. However, certain products exhibit asymmetric degradation rates. In light of this, this paper proposes an approach for reliability analysis based on the inverse Gaussian (IG) degeneration process, which considers both asymmetric random effects and the two-stage nature simultaneously. To begin with, we establish a two-stage IG degradation process model that incorporates a skew normal random effect. Subsequently, we determine the location of change points using the Schwarz Information Criterion (SIC). The estimation of parameters is then conducted by combining Maximum Likelihood Estimations (MLEs) with the Genetic Algorithm (GA). Finally, we validate and demonstrate the practicality for the proposed model through Monte Carlo (MC) simulation and examples involving lithium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.