Abstract

The kinetics and mechanism of the thermal decomposition of the one-electron reduction product of [Fe(CN)(5)NO](2-) (nitroprusside ion, NP) have been studied by using UV-vis, IR, and EPR spectroscopy and mass-spectrometric and electrochemical techniques in the pH range of 4-10. The reduction product contains an equilibrium mixture of [Fe(CN)(4)NO](2-) and [Fe(CN)(5)NO](3-) ions. The first predominates at pH <8 and is formed by the rapid release of trans-cyanide from [Fe(CN)(5)NO](3-), which, in turn, is the main component at pH >9-10. Both nitrosyl complexes decay by first-order processes with rate constants around 10(-5) s(-1) (pH 6-10) related to the dissociation of NO. The decomposition is enhanced at pH 4 by 2 orders of magnitude with protons (and also metal ions) favoring the release of cyanides from the [Fe(CN)(4)NO](2-) ions and the ensuing rapid delivery of NO. At pH 7, an EPR-silent intermediate I(1) is detected (nu(NO), 1695 and 1740 cm(-1)) and assigned to the trans-[Fe(II)(CN)(4)(NO)(2)](2-) ion, an {Fe(NO)(2)}(8) species. At pH 6-8, I(1) induces a disproportionation process with formation of N(2)O and the regeneration of nitroprusside in a 1:2 molar ratio. At lower pHs, I(1) leads, competitively, to a second paramagnetic (S = 1/2) dinitrosyl intermediate I(2), [Fe(CN)(2)(NO)(2)](1-), a new member of a series of four-coordinate {Fe(L)(2)(NO)(2)} complexes (L = thiolates, imidazole, etc.), described as {Fe(NO)(2)}(9). Other decomposition products are hexacyanoferrate(II) or free cyanide, depending on the pH, and precipitates of the Prussian-Blue type. This study throws light on the conditions favoring rapid release of NO, to promote vasodilatory effects upon NP injection, and describes new processes related to dinitrosyl formation and NO disproportionation, which are also relevant to the diverse biological processes associated with NO and N(2)O processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.